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Abstract

Amid much recent interest we discuss a Variance Gamma model for Rugby Union matches

(applications to other sports are possible). Our model emerges as a special case of the recently

introduced Gamma Difference distribution though there is a rich history of applied work using

the Variance Gamma distribution – particularly in finance. Restricting to this special case

adds analytical tractability and computational ease. Our three-dimensional model extends

classical two-dimensional Poisson models for soccer. Analytical results are obtained for match

outcomes, total score and the awarding of bonus points. Model calibration is demonstrated

using historical results, bookmakers’ data and tournament simulations.

Keywords: Football; Variance Gamma distribution; Poisson distribution; Rugby Union;

Soccer; Sports Analytics
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1 Introduction

The Gamma Difference distribution was recently introduced by Klar (2015). This paper had

intended to present one of the earliest applications of this model — namely, the modelling of

Rugby Union matches. However, following an inspired suggestion from an anonymous reviewer,

we restrict to a special case of this model – the so-called Variance Gamma distribution. This

limits discussion to the case where the Gamma distributions in the Gamma Difference distribu-

tion share the same scale parameter. The importance of this restriction is threefold. Firstly, this

builds on a rich history of the Variance Gamma distribution being used in (typically financial)

applications (Madan and Seneta, 1990; Seneta, 2004). Secondly, from an empirical perspetive,

equality of scale parameters means full model calibration to historical results is possible via a

Gamma generalized linear model (see Section 4). The restriction also reduces the dimension

of the numerical optimisation problem involved in empirical calibrations to bookmakers’ bet-

ting odds (see Section 5). Thirdly, we are left with an elegant three-dimensional model as a

theoretical counterpart to classical two-dimensional Poisson models for soccer.

The modelling of Rugby Union matches is of independent interest in its own right (Scarf

et al., 2019). There is a large literature centred around Poisson models for soccer (see e.g.

Maher, 1982). Whilst aspects of the Poisson model remain instructive, Rugby’s complex scoring

system is a significant complication (Scarf et al., 2019). Whilst direct extensions of the classical

Poisson model are possible they are highly parameterised (e.g. single Poisson models for each

mode of scoring) and important aspects of the intuition and analytical tractability may be lost.

Alternative parametric models for Rugby Union are discussed in Scarf et al. (2019). We add

to this discussion by proposing a Variance Gamma model. Aspects of this model incorporate

a non-negativity requirement and allow for the game’s high-scoring and complex nature which

makes it very difficult to precisely estimate match scores a priori. This justifies a continuous

approximation. This notwithstanding, empirical results in Sections 4-5 and shows that our

model can give a good description of both historical data for the Six Nations championship

(Thomas et al., 2008) and to implied probability estimates obtained from bookmakers’ odds.

Further justification of our modelling approach is discussed below.

The layout of this paper is as follows. Section 2 gives a background tutorial on the classical
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Poisson model for soccer matches. Our own Variance Gamma model for Rugby Union matches

is then outlined in Section 3. In-sample applications to historical results and to historical

bookmakers odds are discussed in Sections 4-5. Sections 6-7 detail out-of-sample applications

to tournament simulation and betting. Managerial insights are discussed in Section 8. Section

9 concludes and discusses the opportunities for further research.

2 Background tutorial: the classical Poisson model for soccer

In this section, following a very helpful suggestion from an anonymous reviewer, we present a

background tutorial on the classical Poisson model for soccer matches. Alongside the statistical

modelling of empirical match data (Boshnakov et al., 2015) the classical Poisson model also

possesses a surprising degree of theoretical elegance. This is discussed in Scarf et al. (2019) but

arguably goes much deeper.

It is best to view this model as a two-dimensional problem categorised by an average scoring

rate λ and a probability p of scoring that defines the relative strength of each team. Suppose

that the number of goals in a soccer match is distributed according to a thinned Poisson process.

Goals are scored at rate λ/90 per minute and are scored with probability p by Team X and with

probability 1−p by Team Y . Under this interpretation the parameter λ gives the expected total

number of goals that scored in the match. The parameter λ can be estimated using extensive

historical goal scoring statistics∗. The parameters p and 1 − p can be estimated using relative

team strengths and corrections for home advantage. More detailed effects such as short-term

form, managerial changes, fatigue, bookmakers’ information and subjective judgements could

also be incorporated into models (see e.g. Owen, 2011; Constantinou et al., 2012; Constantinou

and Fenton, 2017).

Set up in this way the model abstracts from known qualities of soccer such as its low-scoring

nature and the fact that real goal-scoring patterns are not very well understood (Kuper and

Szymanski, 2014). This theoretical elegance is further reinforced by the following. Propos-

tion 1 describes the probability of match outcomes for regular matches that last 90 minutes.

∗Games in elite leagues tend to average 2.5-3.5 goals per game – with values outside these ranges often thought
to reflect lower overall standards of play where either the defence or the attack holds a systematic advantage
(Soccervista, 2018)
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Proposition 2 describes further minor adjustments for extra time and penalties.

Proposition 1 (Probability of match outcomes.) We have the following results for overall

match outcomes

(i) The probability of a draw is given by e−λI0(
√
ab),

(ii) The probability that Team X wins is given by Q0(
√
a,
√
b),

where a =
√

2λp, b =
√

2λ(1− p), Ik denotes the modified Bessel function of the first kind

(Abramowitz and Stegun, 1968) and Q0(·) denotes the Marcum Q-function (Nuttall, 1975).

Proof

(i). Draws occur if both teams score n goals in games where 2n goals are scored in total.

Conditional on 2n goals being scored the number of goals scored by team X is Bin(2n, p). The

probability of a draw can thus be calculated as

Pr(Draw) = Pr(2n goals scored in total and X scores n goals)

=
∞∑
n=0

e−λλ2n

(2n)!
.
(2n)!pn(1− p)n

n!n!

= e−λ
∞∑
n=0

(
λ
√
p(1− p)

)2n
n!n!

= e−λI0(2λ
√
p(1− p)).

(ii). Team X wins by a margin of r goals if X = k + r, Y = k and 2k + r goals are scored in

total. Similarly to the above, this probability can be calculated as

∞∑
k=0

e−λλ2k+r

(2k + r)!
.
(2k + r)!pk+r(1− p)k

(k + r)!k!
= e−λ

(
p

1− p

) r
2

Ir

(
2λ
√
p(1− p)

)
. (1)

The probability that Team X wins can then be obtained by summing equation (1) over r to

obtain

Pr(Team X wins) = e−λ
∞∑
r=1

(
p

1− p

) r
2

Ir(2λ
√
p(1− p))

= e−λeλQ0(
√

2λp,
√

2λ(1− p)),
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using

Q0(α, β) = e−
α2+β2

2

∞∑
k=1

(
α

β

)k
Ik (αβ) ,

(see e.g. Proakis, 1983). �

Proposition 2 (Outcomes in one-off knock-out matches.) Assume that in a penalty shoot-

out each team is equally likely to win†. Suppose a knock-out game goes to extra-time

(i) The conditional probability that team X wins after extra time (aet) is given by

Pr (X aet) =
1

2
Q0

(√
2λp

3
,

√
2λ(1− p)

3

)
+

1

2

(
1−Q0

(√
2λ(1− p)

3
,

√
2λp

3

))
. (2)

(ii) The probability that team X wins the knockout match is given by

Pr (X wins) = Q0

(√
2λp,

√
2λ(1− p)

)
+ e−λI0(2λ

√
p(1− p))Pr(X aet). (3)

Proof

(i-ii). Since extra time is 1/3 the of regular time define a′ = a/3, b′ = b/3. If a game goes to

extra time it follows from Proposition 1 that

Pr(X wins outright in extra time) = Q0(a
′, b′),

P r(X aet) = Q0(a
′, b′) +

1

2
e−

λ
3 I0(a

′b′),

P r(X wins) = Q0(a, b) + e−λI0(ab)Pr(X aet).

�

In both Propositions 1-2 above an underlying richness is clearly apparent. The model is tractable

and has a modular structure to it – meaning the above adjustment can be made to adjust for

extra time and penalties. This elegance is further reinforced by the fact that the probabilities

†This simple assumption nonetheless seems to be in line with empirical implied probabilities that can be
obtained from bookmakers’ odds.
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in Propositions 1-2 can be calculated using

Q0(α, β) = 1−G2,α2(β2)− e−
α2+β2

2 I0(αβ),

where G2,α2(·) denotes the Cumulative Distribution Function (CDF) of the non-central χ2 distri-

bution with 2 degrees of freedom and non-centrality parameter α2 (Annamalai and Tellambura,

2008).

Thus, inspired by the elegance of the classical Poisson model, in Section 3 we construct

a Variance gamma model for Rugby Union matches. Analogues of these classical results are

obtained and then further extended to account for Rugby’s additional complexities.

3 A Variance Gamma model for Rugby Union matches

Building on from the classical Poisson model briefly described in the previous section let X and

Y denote the number of points scored in a sporting context by team X and team Y respectively.

We assume that X∼Γ(α, β1) and Y∼Γ(α, β2) and, further, that X and Y are independent. Thus,

we keep the classical simplifying independence assumption but consider alternative distributional

forms. See e.g. a related discussion in Scarf et al. (2019). The complexity of the scoring system

and Rugby’s high-scoring nature justifies the continuous approximation considered here as it is

very difficult to estimate the precise numerical score in such matches given the range of possible

scenarios that could occur. This formulation also naturally imposes a non-negativity constraint

with respect to the discussion of a Gaussian model in Scarf et al. (2019).

Under this model we have that

E[X] =
α

β1
, E[Y ] =

α

β2
,

Pr(X = x, Y = y) = Pr

(
x− 1

2
≤X≤x+

1

2

)
Pr

(
y − 1

2
≤Y≤y +

1

2

)
=

(
Fα,β1

(
x+

1

2

)
− Fα,β1

(
x− 1

2

))(
Fα,β2

(
y +

1

2

)
− Fα,β2

(
y − 1

2

))
,

(4)
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where the result shown in (4) follows from a continuity correction using Fα,β(·) the CDF of a

Gamma distributed random variable with parameters α and β. Following Klar (2015) we have

the following definition:

Definition 1 A Variance Gamma(c, σ, v, λ) random variable is a real-valued random variable

with probability density

fV G(x) =
2 exp(v(x− c)2/σ2)
σ
√

2πλ1/λΓ(1/λ)

(
|x− c|√

2v2/λ+ σ2

) 1
λ
− 1

2

K1/λ−1/2

(
|x− c|

√
2σ2/λ+ v2

σ2

)
, (5)

and characteristic function

φV G(t) := E[eitX ] = eict(1− ivλt+ σ2λt2/2)−1/λ, (6)

where Kλ(·) denotes the modified Bessel function of the third kind.

Proposition 3 Suppose β1≤β2. The distribution of Z := X −Y is Variance Gamma(0, σ, v, λ)

where λ = 1/α, v = α
(

1
β1
− 1

β2

)
, σ2 = 2α

β1β2
.

Proof

X has characteristic function
(

1− it
β1

)−α
, Y has characteristic function

(
1− it

β2

)−α
so X − Y

has characteristic function

φX−Y =

(
1− it

β1

)−α(
1 +

it

β2

)−α
=

(
1− i

(
1

β1
− 1

β2

)
t+

t2

β1β2

)−α
. (7)

The result follows upon comparison of equations (6-7). �

Using Fσ,v,λ(·) to denote the CDF of Z in Proposition 3 gives:

Proposition 4 (Probability of match outcomes.)

Pr(X wins) = = Pr

(
Z≥1

2

)
= 1− Fσ,v,λ(1/2),

P r(Y wins) = Pr

(
Z≤− 1

2

)
= Fσ,v,λ(−1/2),

P r(Draw) = Pr

(
−1

2
≤Z≤1

2

)
= Fσ,v,λ(1/2)− Fσ,v,λ(−1/2). (8)
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Motivated by potential sports-betting applications (Stefani, 2008) we have the following special

case of related results in Zhao (2011).

Proposition 5 (Distribution of points total.) The distribution of the combined points total

for X and Y has probability density

f(y) =
y2α−1(β1β2)

αe−β2y

Γ(α)2

∫ 1

0
uα−1(1− u)α−1 exp{(β2 − β1)yu}du.

Proof

From the convolution formula the density function of X + Y can be written as

fX+Y (y) =

∫ y

0
fX(x)fY (y − x)dx,

=
(β1β2)

αe−β2y

Γ(α)2

∫ y

0
xα−1(y − x)α−1e(β2−β1)xdx,

=
(β1β2)

αe−β2y

Γ(α)2
y

∫ 1

0
(yu)α−1(y − yu)α−1e(β2−β1)yudu,

=
y2α−1(β1β2)

αe−β2y

Γ(α)2

∫ 1

0
uα−1(1− u)α−1 exp{(β2 − β1)yu}du.

�

In most mainstream Rugby Union competitions teams gain a losing bonus point if they lose by

a margin of 7 points or less. This simple observation leads to the following proposition:

Proposition 6 (Probability of obtaining a losing bonus point.)

Pr(Team X obtains a losing bonus point) = Fσ,v,λ(−0.5)− Fσ,v,λ (−7.5) . (9)

In Rugby Union teams may also gain a bonus point by scoring four or more tries in a given match

though there is some minor deviation in bonus points and tournament structure around the world

(see e.g. the discussion in Smart, 2019). Historical data shown in Quarrie and Hopkins (2007)

suggests that 5.9 tries is roughly equivalent to scoring 55 points. This suggests that in our model

scoring four tries would be roughly equivalent to scoring 55× 4
5.9≈37 points and follows a similar

approach taken in Smart (2019). This simple observation leads to the following proposition:
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Proposition 7 (Approximate probability of obtaining a try bonus point.)

Pr(Team X obtains a try bonus point)≈1− Fα,β1 (36.5) .

4 In-sample application: Model calibration using historical re-

sults

In this section we calibrate our model to the Guinness Six Nations championship based on

historical data for the five competitions (2014-2018). This tournament has previously attracted

academic interest (Thomas et al., 2008). Moreover, the tournament’s well-established nature,

coupled with the absence of promotion and relegation, mean that we can reasonably expect past

results to serve as a good indication of future performance in this case.

We model the observed match score as a Gamma generalized linear model with identity

link (Bingham and Fry, 2010). This linearity adds to the interpretability of the model. For

example, results in Table 1 indicate that home advantage is worth approximately three extra

points to the home team. This linearity is also convenient with respect to numerical calculations

in Section 7. The variable team abstracts from teams’ attacking strengths and is highest for

England. The variable opponent abstracts from teams’ defensive strengths and is lowest (best)

for Ireland and Wales and higher (worse) for generally weaker teams such as France, Scotland

and Italy. Estimated parameters for this model are shown below in Table 1. An F -test gives an

F -value of 9.961 on 11 and 138 degrees of freedom giving conclusive evidence (p = 0.000) that

the individual teams’ offensive and defensive strengths and home advantage all have a significant

effect upon match outcomes.

Given an estimated value of µX from the model in Table 1 the parameters of the underlying

gamma distribution can be obtained using

µX =
α

βX
; α =

1

φ̂
; βX =

α

µX
=

1

φ̂µX
.

Similarly, the variance of the match scores can be calculated as Var[X] = α/β2X = φµ2X . Ex-

pected match scores according to this model are shown in Table 2. Estimated probabilities of
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Parameter Estimate e.s.e t-value p-value

Intercept (England) 19.3595 2.7870 6.946 0.0000∗∗∗

Team=France -4.6091 2.6682 -1.727 0.0863 ·
Team=Ireland -1.9671 2.9247 -0.673 0.5023
Team=Italy -6.6983 2.4650 -2.717 0.0074∗∗

Team=Scotland -4.4742 2.6233 -1.706 0.0903 ·
Team=Wales -1.4067 2.8934 -0.486 0.6276
Opponent=France 1.4405 2.3164 0.622 0.5351
Opponent=Ireland -2.8016 2.0015 -1.404 0.1625
Opponent=Italy 20.4322 3.8541 5.301 0.0000∗∗∗

Opponent=Scotland 6.1693 2.6656 2.314 0.0221∗

Opponent=Wales -0.5858 2.1297 -0.275 0.7837
Home 3.0894 1.3812 2.237 0.0269∗

Table 1: Gamma generalized linear model with identity link applied to historical data for
the Guinness Six Nations championship over the years 2014-2018. Dispersion parameter
φ̂ = 0.2054172.

match outcomes according to this model are shown in Table 3.

Home Team Away team
England France Ireland Italy Scotland Wales

England – 24-15 20-17 43-13 29-15 22-18
France 18-21 – 15-19 38-14 24-16 17-19
Ireland 20-17 22-12 – 41-10 27-12 20-15
Italy 16-40 17-35 13-38 – 22-35 15-38
Scotland 18-26 19-21 15-24 38-19 – 17-24
Wales 21-19 22-14 18-17 41-12 27-14 –

Table 2: Expected match scores for the Guinness Six Nations championship based on the model
shown in Table 1.

5 In-sample application: Model calibration using bookmakers’

data

Implied probabilities for match outcomes can be obtained from raw bookmakers’ odds using

basic normalisation (S̆trumbelj, 2014) which ensures that the estimated probabilities sum to 1.

Following helpful suggestions from an anonymous reviewer an example calculation of how this

can be achieved is shown below in Table 4.

Our model can be calibrated to this bookmakers’ data by minimising the least squares
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Home Team Away team
England France Ireland Italy Scotland Wales

England – 0.753 0.555 0.961 0.827 0.601
– (0.219) (0.409) (0.033) (0.152) (0.366)

France 0.391 – 0.347 0.927 0.706 0.411
(0.575) – (0.615) (0.063) (0.265) (0.552)

Ireland 0.609 0.806 – 0.979 0.873 0.643
(0.356) (0.166) – (0.016) (0.108) (0.321)

Italy 0.078 0.133 0.051 – 0.226 0.077
(0.912) (0.851) (0.940) – (0.755) (0.912)

Scotland 0.284 0.438 0.238 0.851 – 0.295
(0.689) (0.528) (0.733) (0.134) – (0.675)

Wales 0.552 0.743 0.530 0.963 0.823 –
(0.414) (0.227) (0.432) (0.031) (0.155) –

Table 3: Estimated probabilities of a home win (away win) for the Guinness Six Nations cham-
pionship based on the model shown in Table 1.

Suppose the odds for an England v Australia match are:
England win 4/11
Draw 33/1
Australia win 14/5.
The implied probabilities can be calculated as

Pr(England win). 1−p
p = 4

11 ; p = 11
15 ,

Pr(Draw). 1−p
p = 33

1 ; p = 1
34 ,

Pr(Australia win). 1−p
p = 14

5 ; p = 5
19 .

These probabilities sum to 11
15 + 1

34 + 5
19 = 9941

9690 .
So using basic normalisation
Pr(England win) = 11

15 ×
9690
9941 = 7106

9941 ,
Pr(Draw) = 1

34 ×
9690
9941 = 285

9941 ,
Pr(Australia win) = 5

19 ×
9690
9941 = 2550

9941 .

Table 4: Example calculation of implied probabilities from bookmakers’ odds

distance between the bookmaker estimates and the theoretical quantities shown in Proposition

4. This can be achieved using the function optim in R which in practice often ensures that

the bookmaker probabilities are reconstructed exactly modulo machine error. Results clearly

demonstrate that the parameters of our model can produce realistic match probabilities for a

range of international (Table 5) and English domestic matches (Table 6). This is important in

that it shows parameterisations of our model can be used to match empirical market probabilities

in a similar way to how theoretical financial options-pricing models can be used to derive implied
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volatilities from traded prices on markets.

Match and date Outcome Bookmakers’ Bookmaker’s Estimated
odds implied model

probability probability

Italy v New Zealand Italy win 25/1 0.038 0.038
24.11.18 Draw 100/1 0.010 0.010

New Zealand win 1/41 0.953 0.953

Scotland v Argentina Scotland win 4/9 0.667 0.667
24.11.18 Draw 25/1 0.037 0.037

Argentina win 9/4 0.296 0.296

England v Australia England win 4/11 0.715 0.715
24.11.18 Draw 33/1 0.029 0.029

Australia win 14/5 0.257 0.257

Wales v South Africa Wales win 5/4 0.422 0.422
24.11.18 Draw 25/1 0.036 0.036

South Africa win 3/4 0.542 0.542

Ireland v USA Ireland win 1/100 0.976 0.976
24.11.18 Draw 90/1 0.011 0.011

USA win 75/1 0.013 0.013

Table 5: Model calibration to bookmakers’ data from the 2018/19 autumn internationals. Data
obtained from oddschecker.com on 19.11.18

6 Out-of-sample application: Simulating the Six Nations Rugby

Union Championship

In this section we consider tournament simulations in an out-of-sample application of our model.

Simulations of the 2019 Guinness Six Nations championship under the model in Section 4 are

shown in Table 7. Results demonstrate that tournament outcomes are subject to considerable

uncertainties – especially once the effects of home advantage are taken into account (see e.g.

Thomas et al., 2008). Generally, the model seems to produce realistic-looking results. For

example, Italy appear to be much weaker than the other teams in the tournament. Results also

give non-trivial insights in that there may be advantages in having an improved defensive record

(Ireland) compared to having an improved offensive record (England). This reflects enhanced

recent emphasis upon the defensive side of international Rugby.
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Match and date Outcome Bookmakers’ Bookmaker’s Estimated
odds implied probability model probability

Gloucester v Saracens Gloucester win 8/13 0.609 0.609
22.2.19 Draw 25/1 0.038 0.038

Saracens win 25/14 0.353 0.353

Harlequins v Bristol Harlequins win 2/7 0.729 0.729
23.2.19 Draw 25/1 0.036 0.036

Bristol win 3/1 0.234 0.234

Wasps v Sale Wasps win 17/35 0.644 0.644
23.2.19 Draw 25/1 0.037 0.037

Sale win 2/1 0.319 0.319

Exeter v Newcastle Exeter win 2/17 0.882 0.882
23.2.19 Draw 50/1 0.019 0.019

Newcastle win 9/1 0.099 0.099

Northampton v Bath Northampton win 8/11 0.555 0.555
23.2.19 Draw 22/1 0.042 0.042

Bath win 11/8 0.404 0.404

Worcester v Leicester Worcester win 8/13 0.602 0.602
24.2.19 Draw 25/1 0.037 0.037

Leicester win 17/10 0.360 0.360

Table 6: Model calibration to bookmakers’ data for selected UK domestic matches. Data ob-
tained from oddschecker.com on 18.2.18

7 Out-of-sample application: Projecting betting odds for the

Six Nations Rugby Union Championship

In this section, following very helpful comments from an anonymous reviewer, we consider an

out-of-sample betting application to the 2019 Guinness Six Nations Championship. To do this

we use the model estimated in Section 4 and use Proposition 4 to estimate the probabilities for

each match outcome. Accompanying 95% confidence intervals for these estimated probabilities

can then be obtained via the delta method (see e.g. Bingham and Fry, 2010). To be precise

the confidence intervals can be constructed as p̂±tn−p(0.975)σ̂P where σ̂2P can be obtained via

a linear transformation of the variance-covariance matrix of the coefficient estimates for the

underlying generalized linear model. Results in Table 8 are suggestive of possible mis-pricing

(and profitable opportunities) if the implied probabilities from the odds offered by a counter-

party lie outside of the intervals constructed.
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Position

Team Mean Standard Deviation Median Confidence Interval Actual

England 2.419 1.202 2 1-5 2
France 3.688 1.242 4 1-6 4
Ireland 2.197 1.177 2 1-5 3
Italy 5.806 0.510 6 4-6 6
Scotland 4.354 1.137 5 2-6 5
Wales 2.535 1.300 2 1-5 1

Points

England 15.127 3.448 11.891 8-22 18
France 11.129 3.504 11 5-18 10
Ireland 15.770 3.424 16 9-22 14
Italy 4.138 1.529 4 3-9 0
Scotland 8.799 3.614 9 2-17 9
Wales 14.706 3.749 15 7-21 20

Table 7: Simulated results for the 2019 Guinness Six Nations championship based on the model
shown in Table 1. Results based on 100,000 simulations. Top panel: Final position. Bottom
panel: Points total. Note that all listed points totals exclude an additional three bonus points
awarded to teams that win the Grand Slam. This is an innovation introduced to ensure that
any team that won all five matches automatically wins the Championship irrespective of the
number of bonus points awarded to other teams.

8 Managerial insights

This paper has contributed to the quantitative modelling of sports (Haigh, 2009). Whilst,

increasing attention has been paid to other sports such as football (Owen, 2011), cricket (Dewart

and Gillard, 2019), golf (Lewis, 2005), athletics (Volf, 2011), and tennis (Forrest and McHale,

2019) until recently relatively little attention had been paid to Rugby Union (Scarf et al., 2019).

In extending a classical Poisson model we are able to highlight important conceptual differences

between football and Rugby Union.

This paper provides a new way of conceptualising Rugby Union matches in a way that is

more intuitive than more highly parameterised alternatives (Scarf et al., 2019). The model

is easy to simulate from and can be calibrated to historical match data via standard applied

statistical techniques (standard generalised linear models) or to bookmakers odds. Here, this

latter calibration is achieved by using computational least squares in R. This is shown to re-

construct empirical probabilities inferred from cited bookmakers’ odds for historical matches

over a range of different competitions. R-code and examples are available from the authors
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Match Home win Away win Draw

France v Wales 0.411 0.552 0.036
(0.198-0.625) (0.335-0.769) (0-0.250)

Scotland v Italy 0.851 0.134 0.015
(0.739-0.963) (0.029-0.240) (0-0.120)

Ireland v England 0.609 0.356 0.035
(0.392-0.826) (0.143-0.568) (0-0.247)

Scotland v Ireland 0.238 0.733 0.029
(0.068-0.408) (0.554-0.913) (0-0.199)

Italy v Wales 0.077 0.912 0.011
(0.006-0.148) (0.834-0.990) (0-0.082)

England v France 0.753 0.219 0.028
(0.579-0.927) (0.054-0.384) (0-0.193)

France v Scotland 0.706 0.265 0.029
(0.526-0.886) (0.092-0.438) (0-0.202)

Wales v England 0.552 0.414 0.034
(0.341-0.763) (0.206-0.623) (0-0.242)

Italy v Ireland 0.051 0.940 0.009
(0-0.105) (0.879-1.000) (0-0.063)

Scotland v Wales 0.295 0.675 0.029
(0.115-0.475) (0.489-0.862) (0-0.209)

England v Italy 0.961 0.033 0.006
(0.919-1.000) (0-0.069) (0-0.043)

Ireland v France 0.806 0.166 0.028
(0.643-0.970) (0.015-0.317) (0-0.179)

Italy v France 0.133 0.851 0.016
(0.026-0.239) (0.737-0.966) (0-0.123)

Wales v Ireland 0.530 0.432 0.038
(0.299-0.761) (0.203-0.661) (0-0.267)

England v Scotland 0.827 0.152 0.021
(0.695-0.959) (0.029-0.275) (0-0.144)

Table 8: Estimates and 95% confidence intervals for probabilities of individual match outcomes
for the 2019 Guinness Six Nations Championship using the Gamma generalized linear model
shown in Section 4. Implied probabilities that lie outside of the constructed confidence intervals
are indicative of potentially profitable opportunities due to mis-pricing.

upon request.

9 Conclusions and further work

Following recent theoretical and applied work we develop a Variance Gamma model for Rugby

Union matches. Our model retains the elegance of the classical Poisson model for soccer but
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incorporates Rugby-specific features such as a non-negativity constraint (in contrast with e.g.

a Gaussian model briefly discussed in Scarf et al., 2019) coupled with extreme unpredictability

caused by the game’s high-scoring nature and the complexity of the scoring system. Results

are obtained for the probability of match outcomes, the distribution of the points total and

the awarding of bonus points. Empirical calibration of the model to historical match data

and to bookmakers’ odds gives encouraging results in sample. Out-of-sample applications to

tournament simulation and to betting are also discussed. Future work will explore sports-betting

applications alongside extensions to other sports.
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